Computer Animation Activity:

 Linking Matrices andGeometric Transformations

Presented By: Ashley Elmendorf

Activity Significance

Goals:

- Study a real-life application of mathematics
- Apply skills in
> matrix multiplication
\rightarrow geometric transformation identification

- Explore connections between matrix multiplication and geometric transformations

Objectives:

- Create matrices from the points that make up a figure drawn on the coordinate axis
- Perform matrix multiplication and plot the points in the product matrix
- Describe the geometric transformation that would change the figure in the same way as the matrix multiplication

Preparation

Materials:

- Computer Animation Worksheet
- Pencils
- Graph Paper
- Straightedge

Grade Level:

- College
- Upper High School
- Lower Grade Simplifications

Real-Life Application

Difference between early and modern animation creates appreciation for mathematics Relevant examples capture student interest

Early Animation: thousands of hand-drawn images

Modern Animation:

motion translated to computer language

Transformations Background

- awhile since working with transformations
- practice during adolescent transformation lesson

Definitions:

- Translation - slides every point of a figure the same distance and direction
- Rotation - turns a figure about a fixed point

- Dilation-produces an image that is the same shape but a different size
- Reflection - creates an image on the opposite side of a line or builds a figure that is symmetric about a point

Matrix Multiplication Background

- Typically taught in upper-level college courses
- Matrices can be multiplied only if they have dimensions $A=m \times n$ and $B=n \times p$
$>$ Yields $m \times p$ matrix
\rightarrow Matrix multiplication is not commutative
$>$ Multiply row of A by column of B

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] \quad x\left[\begin{array}{lll}
e & f & g \\
h & i & j
\end{array}\right]=\left[\begin{array}{lll}
a e+b h & a f+b i & a g+b j \\
c e+d h & c f+d i & c g+d j
\end{array}\right]
$$

Activity Procedure

Step 1: Distribute worksheet featuring labeled figure to be transformed. Note: Give unlabeled figure to younger students for plotting practice.

Step 2: Instruct students to create S, a $2 \times z$ matrix, from ordered pairs
$>z=$ number of points in figure
$>$ rows $=x$ - values
$>$ columns $=y$-values

$$
S=\left[\begin{array}{rrrrrrrrrr}
-1 & 0 & 2 & 2 & 4 & 0 & -1 & -3 & 1 & 0 \\
1 & 3 & 3 & 1 & 1 & 0 & -2 & -1 & -2 & -4
\end{array}\right]
$$

Activity Procedure continued

Step 3: Students should complete parts a and b of questions $1-3$.
a. multiply S by the given matrix
b. plot and connect the points in the product matrix (figure revealed)

Note: Give product matrices to younger class.
Inform class that each column represents an ordered pair.

Step 4: Ask students to answer part c of questions 1 - 3.
$>$ Identify the transformation that produced each image.
$>$ Draw any centers of rotation, lines and points of reflection, etc.

Question 1: $\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right] \times\left[\begin{array}{rrrrrrrrrr}-1 & 0 & 2 & 2 & 4 & 0 & -1 & -3 & 1 & 0 \\ 1 & 3 & 3 & 1 & 1 & 0 & -2 & -1 & -2 & -4\end{array}\right]$
Solution: $\left[\begin{array}{rrr}-1 x+0 y & \cdots \\ 0 x+1 y & \cdots\end{array}\right]$

- Negate x-values
- Keep y - values

Transformation: reflection over y-axis

Activity Procedure continued

Question 2: $\left[\begin{array}{ll}2 & 0 \\ 0 & 4\end{array}\right] x\left[\begin{array}{rrrrrrrrrr}-1 & 0 & 2 & 2 & 4 & 0 & -1 & -3 & 1 & 0 \\ 1 & 3 & 3 & 1 & 1 & 0 & -2 & -1 & -2 & -4\end{array}\right]$

Solution: $\left[\begin{array}{ll}2 x+0 y & \cdots \\ 0 x+4 y & \cdots\end{array}\right]$

- Double x-values
- Quadruple y - values

Transformation: dilation: twice as wide and 4 times as tall

Activity Procedure continued

Question 3: $\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right] x\left[\begin{array}{rrrrrrrrrr}-1 & 0 & 2 & 2 & 4 & 0 & -1 & -3 & 1 & 0 \\ 1 & 3 & 3 & 1 & 1 & 0 & -2 & -1 & -2 & -4\end{array}\right]$
Solution: $\left[\begin{array}{cc}0 x+-1 y & \cdots \\ 1 x+0 y & \cdots\end{array}\right]$

- x-values become negated y - values
- y-values become x-values

Transformation: 90° rotation about $(0,0)$

Activity Procedure continued

Step 5: Assign question 4.

- Create R by adding a third row of 1's to S.
> Ignore the third row of the product matrix when plotting.

$$
R=\left[\begin{array}{rrrrrrrrrr}
-1 & 0 & 2 & 2 & 4 & 0 & -1 & -3 & 1 & 0 \\
1 & 3 & 3 & 1 & 1 & 0 & -2 & -1 & -2 & -4 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1
\end{array}\right]
$$

Activity Procedure continued

Question 4: $\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right] x\left[\begin{array}{rrrrrrrrrr}-1 & 0 & 2 & 2 & 4 & 0 & -1 & -3 & 1 & 0 \\ 1 & 3 & 3 & 1 & 1 & 0 & -2 & -1 & -2 & -4 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right]$

Solution: $\left[\begin{array}{l}1 x+0 y+2 \cdots \\ 0 x+1 y+0 \cdots \\ 0 x+0 y+1 \cdots\end{array}\right]$

- Increase x - value by 2
- Keep y - value
- Keep third row of 1's

Transformation: translation 2 units to the right

Some Alterations

- Assign different figures
> add interest
$>$ encourage individual effort
- Divide students into groups based on figure
$>$ diversity
$>$ reduce number of assignments to grade
- Ask students to work with favorite animated character for homework

Sources

Geometry. (1998-2012). Retrieved from Oswego City School District Regents Exam Prep Center: http://www.regentsprep.org/Regents/math/geometry/ mathGEOMETRY.htm\#m5

Russell, C. (2000-2013). Computer Animation. Retrieved from NCTM Illuminations: http://illuminations.nctm.org/LessonDetail.aspx?id=L841

